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A new method is presented for the prediction of unsteady axisymmetric inviscid
flows. By combining a triangulated vortex approach with a novel evaluation tech-
nique for the Biot–Savart integrals, a Lagrangian vortex method is developed which
eliminates the singularities usually present in axisymmetric methods, without re-
course to normalizations or other approximations. Furthermore, the computational
effort scales as the number of control points N and, in the large N limit, depends
only on the order of quadrature employed. The accuracy and computational effort
are assessed by comparison with the velocity field of a Gaussian core vortex ring and
the use of the technique is illustrated by computation of the motion of Norbury rings
and of vortex ring pairing. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Since their introduction, Lagrangian vortex methods have been developed into powerful
techniques for the prediction of unsteady incompressible flows. From Rosenhead’s initial
point vortex model [22] (and see also Low [13]) to the work of Chorin [3] and Christiansen
[4], considerable progress has been made in developing methods for the prediction of
vorticity dynamics in two and three dimensions. The increasing popularity of such methods
is due to their conceptual simplicity and to their computational efficiency.

Lagrangian vortex methods work by discretizing a flow into regions of vorticity which are
convected at the local fluid velocity, modeling the development of a flow by calculating the
velocity induced on each vortex element by all of the others. Since the flow is characterized
uniquely by the vorticity, this is a valid approach to the solution of the fluid dynamical
equations. The method is conceptually appealing, being based on well-understood and easily
visualized interactions. It is also, at least in principle, easily implemented: an initial vorticity
distribution is discretized into some set of control points and the velocities of these control
points are calculated by evaluating a Biot–Savart integral over the vorticity distribution.
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The discretization can take a number of forms, the most common being to assume that the
vorticity around each control point has a Gaussian distribution with some characteristic core
size. The blobs are then made to overlap to approximate a smooth distribution of vorticity.

A number of methods have been developed which use this approach [10, 11]. For the
computation of axisymmetric flows, representative examples include the calculation of
vortex-generated noise [8, 12, 27], flow in burners [16] and vorticity dynamics [14, 21].
While this method is robust and efficient (especially when multipole methods are used [26]),
it is not ideal for all applications.

The first difficulty is in approximating a smooth distribution of vorticity with Gaussian
elements. In order to approximate the distribution, a large number of elements must be
used and they must overlap sufficiently to give a smooth variation. Secondly when vortex
methods are used to calculate the flow around solid surfaces, there is a difficulty in generating
vorticity to satisfy the surface boundary condition. Because the Gaussian blobs have a finite
radius, some of the vorticity in a blob lies inside the surface, which is clearly invalid unless
some special treatment is used for surface-generated vorticity.

Recently a new approach has been developed which circumvents these problems by mod-
eling the vorticity distribution as a set of control points which are connected by a triangular
mesh. Vorticity is assumed to vary in a piecewise linear manner over each triangle and the
boundary of the vorticity is clearly defined. This approach was initially developed for two-
dimensional flows [23] and later extended to two-dimensional flows around solid bodies
[6, 7] and to three-dimensional flows [15]. In this paper, the method will be extended to
axisymmetric flows, using a novel method for the evaluation of the Biot–Savart integral,
which does not directly compute element–element interactions and so reduces the computa-
tional cost of the velocity calculations. The approach also has certain numerical advantages
over direct computation of element–element interactions.

A difficulty in calculating the velocity field in an axisymmetric flow is the integration
of the elliptic integrals which appear in the streamfunction (6). These have a logarithmic
singularity as the source point approaches the field point. The numerical integration of such
a singularity is possible but time consuming. For this reason, axisymmetric vortex methods
usually employ a regularization which eliminates the singularity. The approach developed in
this paper removes the singularity by using a vortex disk as the basic element for integration
and performing the Biot–Savart calculation without the use of elliptic integrals.

2. ANALYTICAL FORMULATION

The governing equations for an inviscid, incompressible, axisymmetric, swirl-free flow
are

∂�

∂t
+ vr

∂�

∂r
+ vz

∂�

∂z
= 0, (1)

∂2�

∂z2
+ ∂2�

∂r2
− 1

r

∂�

∂r
= −r�, (2)

where r and z are the radial and axial coordinates, respectively, vr and vz are the corres-
ponding velocities, � is the azimuthal vorticity, � ≡ �/r , and � is the streamfunction. The
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velocities are then

vr = −1

r

∂�

∂z
, (3)

vz = 1

r

∂�

∂r
. (4)

In an inviscid flow, � is conserved and is transported at the local velocity (vr , vz). This
velocity depends on the vorticity via the streamfunction

� = r
∫

S

∫ 2�

0

�(r1, z1)cos �1

4�R
r1 d�1 dr1 dz1, (5)

where

R = [
r2 + r2

1 − 2rr1 cos �1 + (z − z1)2
]1/2

,

and S is the vorticity support in the r − z plane (Fig. 1). Subscript 1 denotes integration
coordinates.

Equation 5 can be integrated in �1 [5, 9],

� = 1

2�

∫
S

�(r1, z1)(R + � )[K (�) − E(�)] dr1 dz1, (6)

where K and E are complete elliptic integrals and

R2 = (r − r1)2 + (z − z1)2,

�2 = (r + r1)2 + (z − z1)2,

� = � − R

� + R
.

The basic approach to calculating an unsteady flow is then to discretize the vorticity
distribution and, using the Biot–Savart integral, calculate the velocity and motion of the
vorticity control points. This can be done using blob-type discretizations [14, 16, 21], as

FIG. 1. Vorticity distribution in r − z plane.
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described above, or, as in this paper, a triangulation method [6, 7, 15, 23]. The problem then
is how to evaluate the integrals.

There are two difficulties in evaluating the integral of (6). The first is one of efficiency
and is common to all Lagrangian vortex methods: how to calculate the velocities at control
points in a reasonable time. The second is related to the nature of the integral. As (r1, z1) →
(r, z), there is a logarithmic singularity in the elliptic integrals. This can be handled by spe-
cialized integration schemes, but this makes coding more difficult and is inefficient. Instead
a different approach has been used, which both eliminates the problem of singularities and
speeds the velocity calculation.

2.1. Integration Method

The Biot–Savart integral for the axisymmetric vorticity distribution is evaluated by inte-
grating over the triangulated vorticity distribution shown in Fig. 2a. A Gaussian quadrature

FIG. 2. Slicing the vorticity distribution to perform the Biot–Savart integral. (a) The mesh is sliced at the
Gaussian quadrature points z = zi ; (b) the vorticity on the line z = zi is interpolated to find the vorticity distribution
as a function of the radius.



620 MICHAEL CARLEY

is used to integrate over z, the axial coordinate. At each Gaussian quadrature point z = zi ,
an integration in r must be performed. The first step is to “slice” the mesh in order to extract
the vorticity distribution as a function of radius. Figure 2a shows the triangulation and the
quadrature point z = zi . Figure 2b illustrates the distribution of vorticity on the line z = zi ,
as a function of radius. In this case, the vorticity is finite on an annulus lying between
radii ai and ao. The slicing method is described in Section 3.1 and involves interpolating
the vorticity on the mesh. When the mesh has been sliced, the vorticity can be used in
the Biot–Savart integral in r to calculate the contribution of the axial station z = zi to the
induced velocity at each control point of the mesh. The important point to note is that the
control points are purely markers for the interpolation and have no existence as “rings”
or “filaments”: the Biot–Savart integral is evaluated over the triangulated region S, but no
element–element interactions are ever evaluated.

2.2. The Flow Field of a Vortex Disk

The evaluation of the velocity induced by an axisymmetric distribution of vorticity is
performed using a method borrowed from the acoustics of pistons [18, 19, p. 227] and rotors
[1, 2]. The basic element in the calculation is a disk of azimuthal vorticity with vorticity
proportional to the radius. By using such an element, general vorticity distributions can
be modeled (see Section 2.3) and the boundary conditions on the axis of symmetry are
satisfied. The boundary conditions on velocity and azimuthal vorticity are

vr |r=0 = 0,
∂vz

∂r

∣∣∣∣
r=0

= 0, �|r=0 = 0. (7)

The velocity boundary condition is satisfied because of the symmetry of the vortex disk and
the vorticity boundary condition is built in to the element. The vorticity distribution is then

�(r1, z1) = �(r1)	(z1), (8)

where 	(·) is the Dirac delta function.
Figure 3 shows the coordinate system for the vortex disk, which is of radius a. Cylin-

drical coordinates (r, �, z) are employed with the vortex disk placed at z = 0. The vorticity
distribution is linear with � = �r1. The streamfunction of the disc � (r, z) is then

� = −�r
∫

S

∫ 2�

0

r1 cos �1

4�R
	(z1)r1 d�1 dr1 dz1,

which, upon performing the integration in z1, becomes

� = −�r
∫ a

0

∫ 2�

0

r2
1 cos �1

4�R
d�1 dr1. (9)

Differentiating, the velocity components are

vr = �z
∫ a

0

∫ 2�

0

cos �1

4�R3
r2

1 d�1 dr1 (10)
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FIG. 3. Coordinate system for a vortex disk.

and

vz = −�

∫ a

0

∫ 2�

0

1

r

r2
1 cos �1

4�R
− r − r1 cos �1

4�R3
r2

1 cos �1 d�1 dr1. (11)

All lengths are now nondimensionalized on the disk radius a and the integrals are rewrit-
ten as

� = �a3�, vr = �aVr and vz = �aVz,

where

� = −r

2

∫ 1

0

∫ 2�

0

r2
1 cos �1

2�R
d�1 dr1, (12)

Vr = z

2

∫ 1

0

∫ 2�

0

r2
1 cos �1

2�R3
d�1 dr1, (13)

and

Vz = −1

2

∫ 1

0

∫ 2�

0

1

r

r2
1 cos �1

2�R
− r − r1 cos �1

2�R3
r2

1 cos �1 d�1 dr1. (14)

The nondimensional integrals can now be evaluated numerically using a coordinate trans-
formation introduced in rotor acoustics [1, 2] and previously in piston theory [18, 19]. The
method was originally developed to allow numerical integrations to be performed more
quickly, but its primary use here is the elimination of the singularities introduced by the use
of elliptic integrals in (12)–(14). First the (r1, �1) coordinates are transformed to the (r2, �2)
system shown in Fig. 4:

r1 cos �1 = r + r2 cos �2,

r1 dr1 d�1 = r2 dr2 d�2.
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FIG. 4. Transformed coordinate system for vortex disk integrals.

Under this transformation, the integrals of (12)–(14) are rewritten as

� = r

2

∫
r2

(
r

R
J0(r, r2) + r2

R
J1(r, r2)

)
r2 dr2, (15)

Vr = z

2

∫
r2

rr2

R3
J0(r, r2) + r2

2

R3
J1(r, r2) dr2, (16)

and

Vz = 1

2

∫
r2

r2

R
J0(r, r2) +

(
r2

2

r R
+ rr2

2

R3

)
J1(r, r2) + r3

2

R3
J2 dr2, (17)

where

Ji (r, r2) = 1

2�

∫ 2�−�
(0)
2

�
(0)
2

cosi �2 d�2. (18)

The limits of integration �(0)
2 depend on r and r2, i.e.,

�(0)
2 = cos−1 1 − r2 − r2

2

2rr2
,

which is the value of �2 at which a circle of radius r2 with center at (r, 0) intersects the unit
circle centered at the origin.

The function Ji can be evaluated analytically:

J0 = � − �(0)
2

�
, (19)

J1 = − sin �(0)
2

�
, (20)

and

J2 = � − �(0)
2

2�
− sin 2�(0)

2

4�
. (21)

When r < 1 and r2 < 1 − r, �(0)
2 = 0 and J1 ≡ 0.
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The limits on r2 depend on the value of r . The integral for � (and similarly Vr and Vz)
can be decomposed:

� = �(1), r > 1 − r,
� = � (1) + � (2), r ≤ 1 − r.

The integral � (1) is always evaluated and is given by

� (1) = r

2

∫ r+1

|r−1|

(
r

R
J0(r, r2) + r2

R
J1(r, r2)

)
r2 dr2. (22)

This is evaluated numerically. When r ≤ 1, the contribution from � (2) must be included and
can be evaluated analytically. When r < 1, r2 < 1 − r , J0 ≡ 1, J1 ≡ 0, and J2 ≡ 1/2, so that

� (2) = r2

2

∫ 1−r

0

r2

R
dr2,

yielding

� (2) = r2

2
(R2 − z), (23)

with

R2 = [(1 − r )2 + z2]1/2.

The equivalent results for the velocity integrals are then

V (2)
r = z

2

∫ 1−r

0

rr2

R3
dr2

= −r

2

(
z

R2
− 1

)
. (24)

and

V (2)
z = 1

2

∫ 1−r

0

r2

R
+ 1

2

r3
2

R3
dr2

= 3R2
2 + z2

4R2
− |z|, r > 0. (25)

For points on the axis of symmetry, r = 0:

Vz = 1

2

(
1 + 2z2

R2
− 2|z|

)
. (26)

Equations 24 and 25 both have finite limits as z → 0, so that no special numerical treatment
is needed to calculate the induced velocities near the vortex disk.
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2.3. General Vorticity Distributions

The calculation of the velocity induced by a general radial distribution of vorticity is
based on the result for the linear distribution derived in the previous section. The velocity
induced by a disk of radius a with a linear distribution of vorticity � = r1 is

aVr = z

4�

∫ a

0

∫ 2�

0

r2
1 cos �1

R3
d�1 dr1.

Differentiating this expression with respect to a yields

∂

∂a
(aVr ) = z

4�

∫ 2�

0

cos �1

R3
d�1.

Likewise, the velocity induced by a disk with general vorticity distribution �(r1) is

vr = z

4�

∫ a

0
�(r1)

∫ 2�

0

r1 cos �1

R3
d�1 dr1,

which can be rewritten as

vr =
∫ a

0

�(r1)

r1

∂

∂r1
(r1Vr ) dr1.

Integrating by parts, the velocity induced by vorticity �(r1) on an annulus with inner and
outer radii ai and ao is

vr = � (r1)r1Vr |ao
ai

−
∫ ao

ai

Vr
∂�

∂r1
r1 dr1. (27)

The equivalent result for the axial velocity is

vz = � (r1)r1Vz|ao
ai

−
∫ ao

ai

Vz
∂�

∂r1
r1 dr1. (28)

Obviously, in the special case � ∝ r1 (that of Norbury rings [17], for example), the inte-
grals in (27) and (28) are identically zero and only the boundary of the vorticity distribution
need be considered.

2.4. Multipole Expansion

Equations 27 and 28 provide a means of calculating the vorticity-induced velocities, in
particular when the evaluation point is near the vorticity disk. When the velocity at a point
far from the vorticity disk is to be evaluated, a multipole expansion can be used instead.
The streamfunction of a vortex disk with vorticity distribution �(r1) is

� = −r
∫ a

0

∫ 2�

0
�(r1)

r1 cos �1

4�R
d�1 dr1. (29)
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Expanding 1/R in a power series in r1,

1

R
= 1

R0

∞∑
q=0

aq

R2q
0

[
r2

1 − 2rr1 cos �1
]q

= 1

R0

∞∑
q=0

aq

R2q
0

q∑
s=0

(q
s

)
(−2r cos �1)sr2q−s

1 , (30)

where R0 = [r2 + z2]1/2 and aq is the coefficient of xq in the power series expansion of
(1 + x)−1/2.

To find the coefficient of rn
1 in the expansion of 1/R, differentiate (30) n times and set

r1 = 0, i.e.,

1

R
=

∞∑
n=0

Anrn
1 ,

An =
n∑

q=[n/2]

aq

Rq
0

(
q

2q − n

)
(−2r cos �1)2q−n,

where [n/2] is the smallest integer greater than or equal to n/2. The streamfunction is then

� = − r

4�

∞∑
n=0

∫ a

0
rn

1 �(r1)

[ ∫ 2�

0
An cos �1 d�1

]
dr1.

The integrals in �1 can be evaluated using the formula

∫ 2�

0
cosn 
 d
 = 0, n odd,

= �

2n−1

(
n

n/2

)
, n even,

and

� = 1

4

∞∑
n=0

∫ a

0
r2n+2

1 �(r1) dr1

2n+1∑
q=0

aq

(
2q − 2n

q − n

)(
q

2q − 2n − 1

)
r2q−2n

R2q+1
0

. (31)

The velocities are then calculated using the relations

−1

r

∂

∂z

(
rn

Rm
0

)
= mzrn−1

Rm+2
0

and

1

r

∂

∂r

(
rn

Rm
0

)
= nrn−2

Rm
0

− mrn

Rm+2
0

.
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3. NUMERICAL IMPLEMENTATION

The technique described in Section 2 has been implemented in an axisymmetric fluid
dynamics code. To simplify code development, the GNU Triangulated Surface Library
[20] has been used to code the triangulation and mesh slicing procedures. To speed the
calculations, the unit disk velocities Vr and Vz are precomputed and an interpolation routine
is used in evaluating (27) and (28) with the multipole expansion, Eq. 32, used for points
which lie outside the domain where the velocities have been computed. Because Vr is
antisymmetric and Vz symmetric, in z, the integrals need be precomputed only for positive z.

To start the computation, the initial vorticity distribution is meshed (using the TRIANGLE

code [24]) to generate the control points. At each time step, the control points are triangu-
lated, using the GNU Triangulated Surface library [20], and the triangulation is sliced to
evaluate the velocity integrals. Integration is performed using Gaussian quadrature. At each
Gaussian quadrature point z = zi , the mesh is sliced to provide the data for the evaluation
of (27) and (28) at each control point. Stating the procedure explicitly:

ALGORITHM 1.
Triangulate the control points.
Generate the bounding box tree for the triangles.
For each Gaussian quadrature point z = zi :
Slice the vorticity distribution (Section 3.1):

Select bounding boxes which straddle z = zi .
Find the intersection of the bounded triangle with z = zi .
Sort the intersection points and discard duplicates.

Evaluate the velocity contribution for each control point.

3.1. Mesh Slicing

The application of the method described in this paper to the calculation of the velo-
city induced by the vorticity distribution requires the extraction of vorticity data on slices
of constant z. Fortunately, this operation can be performed efficiently using axis-aligned
bounding boxes. After the control points have been triangulated, a bounding box tree is
generated which provides an efficient means of finding triangles which are intersected by
a plane z = zi . Figure 5 shows the procedure applied to part of a simple mesh. The mesh
triangles are shown in Fig. 5a, along with the line z = zi . In Fig. 5b, the bounding boxes
for the triangles are shown (but not the higher level bounding boxes), with the boxes which
straddle z = zi shown in bold. Finally, Fig. 5c shows the triangles and bounding boxes, with
the intersection points of z = zi and the triangles indicated. The vorticity at each point is
calculated by linear interpolation between the two points of the edge which intersects z = zi .

After the points of intersection are found, they are sorted in order of increasing r . Because
of the manner in which the points are found, there are a number of duplicates which must
be removed from the list. The final result is a sorted list of points which define the vorticity
distribution at the axial station z = zi .

3.2. Meshing Considerations

The meshing and remeshing of the vorticity distribution are of some importance in
a triangulated vortex method [6, 7, 23], especially in the axisymmetric case, which has
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FIG. 5. Slicing the meshed vorticity to find a radial vorticity distribution. (a) Triangulation and line z = zi ;
(b) bounding boxes, with boxes straddling z = zi shown bold; (c) triangulation with points on edges intersecting
z = zi , shown as solid circles.

features not seen in the two-dimensional problem. In Section 5.2, the interaction of two
initially identical vortex rings is examined. In the plane case, regions of vorticity interact
symmetrically, but in the axisymmetric problem, there is large deformation and the two rings
merge. This large deformation leads to intense distortion of the control point distribution
and of the triangulation, leading to inaccurate interpolation of vorticity on the mesh.

Figure 6 shows an example of the problems to be overcome. Figure 6a shows an ini-
tial mesh for the problem in Section 5.2. This mesh, generated using TRIANGLE [24],
has a smooth distribution of well-formed triangles. Figure 6b shows the same mesh at
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FIG. 6. Mesh distortion. (a) Initial mesh; (b) mesh distortion at t = 6 (see Fig. 11d).

a nondimensional time t = 6, which corresponds to the results of Fig. 11d. No attempt has
been made to regulate the mesh quality and the deterioration is obvious. The first effect is
that the triangles of the mesh vary in size and, especially, in quality. This is mainly due to
the nonuniform flow, which causes strong distortion on the left-hand side and very little
distortion on the right-hand side of the mesh. As control points move with the flow, points
which were initially close together diverge and the associated triangulation loses quality.

A second effect is visible at the top of the mesh. As the vortex rings interact, they draw
fluid (i.e., control points) into the region between them (see Fig. 11). This causes part of
the boundary of the mesh to become concave. The triangulation is bounded by the convex
hull of the control points so that spurious triangles are generated on the mesh boundary.
The vorticity in this region is very small, so these triangles do not cause large errors, but in
other problems this might not be true. It should be noted that the drawing in of the control
points is a real physical effect, so denoting certain points as boundary nodes and requiring
the triangulation to conform to them is not a valid solution to the problem. In this case, the
problem is solved by meshing a large domain so that the vorticity near the boundaries is very
small and the spurious triangles do not introduce a large error in the interpolated vorticities.

To maintain the mesh quality, however, a different approach is required. The method
adopted here is to set a maximum and a minimum edge length in the triangulation. Edges
which exceed a maximum length as they stretch are split by having a new control point
inserted at their midpoints. Edges which fall below a minimum length are collapsed and
their endpoints merged. The effect of setting a maximum length is to maintain resolution
in the mesh. Setting a minimum length has the effect, first, of ensuring that the number of
control points does not become too great and, second, of maintaining the quality of triangles
in the mesh: setting a maximum and minimum edge length imposes a de facto aspect ratio
on triangles.
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4. ALGORITHM PERFORMANCE

The accuracy and speed of the velocity evaluation method have been evaluated by com-
parison with the computed velocity field of a Gaussian core vortex ring. A problem in testing
the method is that the axisymmetric problem does not have the wide range of analytical
solutions available for the two-dimensional problem. An obvious reference would be Hill’s
spherical vortex, which has been used as a test case for other axisymmetric vortex problems
[14, 15], as have the related Norbury rings [17]. These are unsuitable as general test cases
for the method of this paper, however, because they are based on a vorticity distribution
� ∝ r , precisely that which is used in the development of the present technique. This means
that such a problem would not provide a full test of all the elements of the evaluation tech-
nique. For this reason, a Gaussian core vortex has been chosen, as it has a peaked vorticity
distribution and a large variation in vorticity magnitude, features which must be handled
correctly by the evaluation method.

The velocities are calculated by differentiation of (5), i.e.,

vr = − 1

2�r

∫ ∫ [(
∂ R

∂z
+ ∂�

∂z

)
K −

(
1

1 − �

∂ R

∂z
+ 1

1 + �

∂�

∂z

)
E

]
� dr1 dz1, (32a)

vz = 1

2�r

∫ ∫ [(
∂ R

∂r
+ ∂�

∂r

)
K −

(
1

1 − �

∂ R

∂r
+ 1

1 + �

∂�

∂r

)
E

]
� dr1 dz1, (32b)

where the dependence of the elliptic integrals on � and of � on (r1, z1) has been sup-
pressed for clarity. The velocities are calculated numerically by integration of (33) using
an analytically specified vorticity distribution corresponding to a Gaussian core ring of unit
radius

�(r1, z1) = e−R2
0/�2

��2
, (33)

R0 = [
(r1 − 1)2 + z2

1

]1/2
. (34)

In order to numerically integrate (33), the logarithmic singularity in the elliptic integral
K must be handled correctly. This is done by transforming the coordinates to center on the
evaluation point (r, z):

r1 = r + R cos
, z1 = z + R sin
, dr1 dz1 = R dR d
. (35)

The resulting velocity integrals are then

vr = − 1

2�r

∫ 2�

0

∫ Ro(
)

0

[(
∂ R
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(36a)
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]
�R dR d
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(36b)

The limits of integration vary with (r, z): the upper limit Ro(
) varies with 
 and was set
to R0 + 8�. This guarantees that the region of greatest vorticity is always included in the
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integration. A check was performed at each value of 
 to ensure that the upper limit did not
extend across the z-axis, i.e., that

r + R(
) cos
 ≥ 0.

If this condition was violated, Ro(
) was reduced to −r/ cos
, so the integration never
extended beyond the symmetry axis.

To perform the integration of (33), the integration in R was broken into two parts, an
inner region, 0 ≤ R ≤ Ri , and an outer region, Ri ≤ R ≤ Ro. In the inner region, a special
Gaussian quadrature [25] which correctly integrates logarithmic singularities was used,
while a standard Gaussian quadrature was used in the outer region.

To apply the proposed method, the vorticity was meshed on a circle of radius 4� centered
on the core, with � = 0.1. The mesh was not optimized for the vorticity distribution but
quality and area constraints were applied. By varying the constraint on the maximum triangle
area, the number of control points was changed from 161 to 4075, a range of 4.7 octaves.
Velocities were calculated using Gaussian quadrature, varying the number of quadrature
points used in the axial and radial directions, Nz and Nr , respectively. Calculations were
performed for Nz × Nr equal to 512 × 512, 512 × 256, 256 × 256, 128 × 128, and 64 × 64.
All computations were performed on a Pentium III personal computer.

We note that while the selected limits on R in (37) guarantee that the main region of
vorticity is always included in the integration, the integration extends outside the region
covered by the computational mesh for the proposed evaluation method. This means that
there will automatically be some difference between the two calculation techniques, but
since the vorticity which is excluded from the computational mesh is exponentially small,
this difference should be negligible. Since the imposition of a computational mesh will
always involve the truncation of a Gaussian vorticity distribution, such an error is, in any
case, inevitable. The decision was thus taken to make the reference calculation more accurate
than the new technique, in order to provide a proper test.

4.1. Computational Effort

The computational effort for the velocity evaluation can be broken up into that required
for the integration proper (i.e., the Gaussian quadrature) and that required for preprocessing
(control point triangulation and bounding box generation). The integration effort would be
expected to scale as Nz Nr N , i.e., to be proportional to the number of axial quadrature points
(or slices), the number of radial quadrature points, and the number of control points. For large
N , this effort should dominate the computation time. Figure 7 confirms this prediction: the
computational effort for each of the quadratures used asymptotes to a horizontal line and the
effort, or separation between the curves, is proportional to the number of quadrature points
used, in particular for N ∼> 210. The computational effort scales on the number of control
points as (Nz Nr )0.998 for N = 4075 and as (Nz Nr )0.956 for N = 161. The preprocessing effort
is thus negligible in the overall effort required for the velocity evaluation. A direct compar-
ison with the performance of other algorithms is probably not meaningful, since the effort
for the technique of this paper is always O(N ), rather than the O(N 2) or O(N log N ) perfor-
mance of most other algorithms. A more meaningful comparison is the accuracy of the ve-
locity evaluation as a function of the number of control points, discussed in the next section.
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FIG. 7. Computational effort for velocity evaluation: 512 × 512 quadrature points, squares; 512 × 256 quadra-
ture points, circles; 256 × 256 quadrature points, up triangles; 128 × 128 quadrature points, diamonds; 64 × 64
quadrature points, down triangles.

4.2. Accuracy

As noted above, the computational effort for the algorithm of this paper is always O(N ).
This means that the accuracy of the method is the primary measure of quality, on two counts:
the accuracy proper and the computational effort required to attain a given accuracy. Two
measures of error have been considered, the root mean square error in velocity,

Erms =
[

1

N

N∑
i=1

(Ui − Vi )2

U 2
i

]1/2

,

and, following Russo and Strain [23], the L∞ norm of the velocity error,

Ev = maxi |Ui − Vi |
maxi |Ui | ,

where U and V are the velocity magnitudes calculated using (37) and the algorithm of this
paper, respectively.

Figure 8 shows the two error measures as a function of number of control points (Figs. 8a
and 8b) and of computation time (Figs. 8c and 8d). The first point to note is that the rms
error is rather jagged and is possibly not as robust a measure of algorithm accuracy as the
L∞ norm adopted by Russo and Strain [23]. This appears to be due to small absolute errors
in small velocities giving large relative errors. The L∞ norm is thus taken as the primary
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FIG. 8. Velocity error: 512 × 512 quadrature points, squares; 512 × 256 quadrature points, circles; 256 × 256
quadrature points, up triangles; 128 × 128 quadrature points, diamonds; 64 × 64 quadrature points, down triangles.
(a) rms error versus number of control points; (b) L∞ norm versus number of control points; (c) rms error versus
computation time; (d) L∞ norm versus computation time.
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FIG. 8—Continued
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measure of error. Figure 8b shows that this can be reduced with the number of quadrature
points used and, for Nz Nr > 128 ×128, with the number of control points. For the higher
order quadratures, the error falls quite quickly before reaching a roughly constant value for
N ∼> 29. The error in this case comes from two sources: the quadrature itself, which is of
fixed order, and the interpolation error, which is a function of the mesh. We note that no
error has been introduced in reformulating the problem: the equations for the velocities in
Section 2.3 are exact restatements of the Biot–Savart integrals and not approximations of
them. This means that any error in the computed results is due to the numerical procedures
used and not to the formulation itself.

For small N , the error is dominated by the interpolation, so that the error (on both
measures) is roughly independent of the number of quadrature points. As N is increased,
the error is reduced as the order of the quadrature rises. The variation of the error with N
is similar to that of the three-dimensional tetrahedral vorticity method of Marshall et al.
[15, Fig. 2], where the rms error in an indirect calculation is shown to decrease rapidly with
N for small N and then to level off. The rms error shown in Fig. 8a is comparable to that
of [15], for the two higher order quadratures.

Figures 8c and 8d show the variation of error with computation time. Again, for the higher
order quadratures, the error falls quickly with CPU time before reaching a constant value.
The shape of the curves for the higher order quadratures appears to confirm the hypothesis
of the source of the errors: for small N , the error depends on the interpolation or number
of control points, so that increasing the number of control points has little effect above a
certain threshold, while at large N , the accuracy is controlled by the number of quadrature
points and the expenditure of extra computational effort results in improved accuracy.

In summary, the error depends on the number of control points N and on the order of
quadrature Nz Nr adopted. For small N , the error depends on N , while for large N it depends
on Nz Nr , becoming independent of N at large N .

5. RESULTS

Two sample problems are solved to demonstrate the application of the method developed
in Sections 2 and 3. The first is the calculation of the propagation velocity of steady vortex
rings from the family defined by Norbury [17]. These are rings for which vorticity is
proportional to radius and are thus the simplest problem to which the method of this paper
applies. The second problem is the interaction of two initially identical vortex rings, a model
problem for certain aspects of jet noise.

5.1. Norbury Rings

The Norbury family of vortex rings [17] is made up of vortex rings characterized by a
core-size parameter �. Values of � near zero correspond to infinitesimal circular core rings,
while � = √

2 defines Hill’s spherical vortex. Both the propagation velocity and core shape
depend on � and data have been given by Norbury for each of these [17], as well as for other
relevant characteristics of the rings. The vorticity distribution inside the core is proportional
to the radius, so that only the core boundary terms in (27) and (28) contribute to the motion.
For this reason, as seen in Fig. 9, the vorticity mesh can be quite coarse. The boundary, on
the other hand, must be finely discretized.

Figure 10 shows the computed propagation velocity of vortex rings with varying values
of � compared to the velocities given by Norbury [17]. The match is excellent, as might be
expected given the nature of the calculation method. We note that strictly speaking there is
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FIG. 9. Meshed Norbury ring, � = 0.6.

no need to discretize the interior of the vortex core if the vorticity distribution is prescribed
to be linear, in which case only the boundary need be described.

5.2. Pairing of Vortex Rings

The second problem to which the method of this paper has been applied is that of the
interaction of two initially identical vortex rings. This has previously been studied as a
model problem for noise generation by circular jets [28] and the same parameters have

FIG. 10. Computed and theoretical velocities of Norbury rings.
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been used as in the previous study. The ring cores are initially circular, with a Gaussian
distribution of vorticity in the core and a core-thickness-to-ring-radius ratio of 0.3. Lengths
have been nondimensionalized on ring radius and times on ring circulation. The rings are
initially one radius apart. Figure 11 shows the development of the vorticity field (see also

FIG. 11. Evolution of vorticity during the interaction of two identical vortex rings. (a) t = 0; (b) t = 2;
(c) t = 4; (d) t = 6; (e) t = 8; (f) t = 10. The contour spacing is 0.3.
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FIG. 11—Continued

Fig. 3 of Ref. [28]) at equally spaced nondimensional times. As t increases, the right-hand
ring is pulled through the left-hand ring, which expands to “swallow” it. The core of the
initially right-hand ring is wrapped around the core of the left-hand one and the two rings
merge to form a single ring with a tail of weak vorticity trailing behind.

Figure 12 shows the difficulties involved in meshing this problem. These results were
generated using a smaller mesh than that used for Fig. 11, to help illustrate the distortion
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FIG. 12. Mesh distortion during ring interaction calculation: the dashed line shows the convex hull of the
computational mesh. (a) t = 0; (b) t = 2; (c) t = 4; (d) t = 6; (e) t = 8; (f) t = 10.
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FIG. 12—Continued

issue. The same results are shown for the same values of nondimensional time but with
the convex hull of the control points also indicated. In the early stages of the interaction
(Figs. 12a–12c), the convex hull remains semicircular, but from Fig. 12d (t = 6) onward,
the distortion shown in Fig. 6 is obvious. As the rings interact, they begin to draw control
points from the mesh boundary into the main vorticity region, causing the boundary to
become concave. The convex hull then jumps over the concave region and the boundary
straightens (Fig. 12f). Without some form of remeshing, this would lead to the presence of
poor-quality triangles in the boundary region. Indeed, the movement of vorticity toward the
mesh boundary may well be a reason for low confidence in the simulation at this point.

Finally, we note that the vorticity contours have become quite jagged by t = 10 in Fig. 11.
The reason for this appears to be the absence of viscosity in the model, so that regions of low
and high vorticity become interleaved and do not diffuse into each other. The overall vorticity
distribution does, however, remain similar to that in the viscous calculations of Ref. [28].

6. CONCLUSIONS

Two previously existing numerical methods have been combined to develop a technique
for the prediction of axisymmetric, inviscid, incompressible flows. By employing a tri-
angulated vorticity distribution with Biot–Savart integrations performed using a method
developed for rotor acoustics [1, 2], an efficient, O(N ), Lagrangian vortex method has been
devised. In this paper, results are presented for the motion of Norbury rings [17] and for the
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interaction of two initially identical circular core rings. The results are in good agreement
with previously published data and demonstrate the self-adapting nature of the method
and its reliability. The technique can be extended to nonaxisymmetric flows in axisymmet-
ric domains using previously developed formulae [1, 2]. Finally, we note that the idea of
“slicing” the computational mesh could also be used to develop a similar O(N ) approach
for two-dimensional problems and provides an interesting alternative to standard multipole
techniques.
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